
Fully Dynamic Insertion and Promotion Policy 
 
 

Minsik Oh, Byunghoon Lee, Kwangsu Kim, Eui-Young Chung  
Department of Electrical and Electronic Engineering 

Yonsei University, Seoul, Korea 
stomlions@dtl.yonsei.com, {stomlions, bh2, kskim}@dtl.yonsei.ac.kr, eychung@yonsei.ac.kr 

 
 

Abstract 
As the number of cores integrated in chip multi-

processors (CMPs) increases, the importance of last-
level cache becomes prominent due to increased 
resource sharing. In order to efficiently manage 
shared resources, researches related to cache 
replacement policy have been steadily performed. In 
this work, we suggest a fully dynamic cache line 
insertion and promotion policy to dynamically adjust 
cache line allocation. The experiment results show 
that the proposed replacement policy improves the 
Miss per Kilo-Instructions(MPKI) by about 5.2% 
and 7.1% and  the Instruction per Cycles(IPC) by 
about 2.2% and 2.5% compared to the baseline LRU 
replacement policy in dual-core and quad-core 
system, respectively. 
 
Keywords: Insertion and promotion policy, 
replacement policy, cache management. 
 
1. Introduction 

In chip multiprocessor(CMP) architectures, 
shared last-level cache is adopted in order to 
maximize cache utilization by sharing resources. As 
the number of cores increases, so does the 
importance of shared last-level cache(LLC) 
management in order to satisfy performance 
requirement. In order to improve cache utilization, 
cache replacement policy has been progressively 
studied in academia [1-6, 8]. In general, cache 
replacement schemes consist of three parts: insertion, 
promotion and eviction. 

An insertion policy which selects cache lines’ 
position in LRU is suggested to filter low reusability 
workload out [1]. However, this replacement policy 
does not take into account the situation of cache 
contention issue which is harsh to system 
performance. To mitigate this problem, Xie et al. [2] 
suggested a utility-based pseudo-partitioning 
technique to dynamically orchestrate the insertion 
point per core. However this scheme results in a 
degradation of cache utilization, because the sum of 
insertion point should be equal to the associativity of 
the cache in the scheme. In case of promotion policy, 
the most of works used general LRU or single-step  

  

  
Figure 1: Miss rate curves for the position of 
insertion and promotion points. (a) bzips (upper 
graphs)  (b) soplex (lower graphs) 

 
promotion which is struggle to go upstream through 
allocated other cache lines gradually. The author in 
[6] proposed promotion policy using re-reference 
interval prediction scheme, but it only control 
promoted degree based on access frequency. There 
has also been a study [8] to differentiate long term 
cache lines and short term cache lines to dynamically 
adjust the promotion point. However, this work only 
focuses on preserving long term cache lines, and 
cannot reflect the situations of system performance 
degradation. 

To our knowledge, there is no previous work to 
fully adjust both insertion and promotion position in 
a dynamic manner. Most studies only focus on 
insertion policy with empirically deduced promotion 
policies or promotion policy without considering 
workload characteristics. In this work, we suggest a 
fully dynamic insertion and promotion policy to 
manage LLC to adjust cache line allocation 
dynamically to improve the system performance. 

 
2. Motivation 

The objective of a cache replacement policy is to 
efficiently conserve useful cache line to improve 
cache utilization. To satisfy the goal, it is important 
to allocate each cache line to an appropriate position 



to prevent useful cache lines from evicted by the 
ones with low reusability within their lifetime.  

Figure 1 is the examples of LLC miss rate with 
different position of insertion and promotion points 
in a single-core systems. This graph is obtained 
using bzip2 and soplex in SPEC2006 benchmark 
suite. Insertion and promotion points indicate the 
position in LRU stack, e.g. point ‘0’ indicates MRU 
position and ‘15’ indicates LRU position. In Figure 1 
(a), LLC miss rate for insertion point shows that 
cache utilization is better between LRU and MRU 
point, unlike promotion point. Intuitively, it should 
be beneficial performance-wise to adjust the 
insertion point to 6~8 and promotion point to 0. 
While, in Figure 1 (b), miss rate is not sensitive to 
the insertion point, but to the promotion point at 
nearby MRU position. For workloads with similar 
characteristic, it will be beneficial to offer MRU 
position to promotion point rather than insertion 
point. 

Through this observation, it is apparent that 
previous work only focuses on insertion policy or 
promotion policy which cannot consider the case of 
benefiting from adjusting along with the insertion 
and promotion point. In this work, we propose a 
fully dynamic insertion and promotion replacement 
policy based on this observation. 
 
3. Dynamic Insertion/Promotion Policy 

In this section, we introduce the proposed 
insertion and promotion policy. 

The proposed policies are based on the following 
characteristics of computational workloads. 
Kaseridis et al. in [3] categorized workloads into the 
following three categories: cache-friendly, cache-
fitting, cache-thrashing and streaming workloads. 
First of all, in a cache-friendly workload, also 
referred as a capacity-sensitive workload, the 
performance of the workload is improved over the 
increase in cache capacity. In cache-fitting workload, 
on the other hand, the performance is saturated when 
a certain cache capacity reaches a sufficient. Finally, 
in case of cache thrashing or streaming workload, 
due to the large working set size or low reusability of 
the data, the change in the cache capacity incurs 
negligible to no performance improvement. Due to 
the aforementioned characteristics, cache-friendly 
and cache-fitting workloads have a certain capacity 
range in which capacity-sensitivity is maximized, so 
it is important that the data from these workloads is 
stored near MRU position and low-reuse data from 
cache-thrashing and streaming workloads is stored 
near LRU position to prevent relevant data in LLC 
from being evicted, taking account of cache 
contentions between processes. 

Our proposed fully dynamic insertion and 
promotion policy, in a certain interval, moves the 
data towards MRU position or LRU position with 

respect to the hit count change incurred by the 
adjustment of insertion and promotion point from the 
previous interval. That is, if the performance 
gain/loss of a process is highly affected by the 
change in the hit count, the insertion and promotion 
point would move towards MRU position, or move 
towards LRU position otherwise. 

 

 
Figure 2: Example of the operation of insertion 

and promotion policy 
 

 
Figure 3: Insertion and promotion pointer 
management Unit 

 
Figure 2 depicts an example showing the basic 

operation of the proposed dynamic insertion and 
promotion policy. Each core has its dedicated 
insertion point and promotion point, and adjusts 
them independently using the point positioning 
algorithm discussed later in this paper. When a cache 
miss occurs after a tag access, a new block(I, J) is 
allocated to the cache line pointed by the requesting 
core’s insertion point. When a cache hit occurs, the 
target block(C, F) references the promotion point 
and is migrated to the pointed position. 

We must configure the architecture as to control 
each insertion point and promotion point. For that, to 
decision and query to insertion and promotion point, 
we set the pointer management unit which consists 
of insertion/promotion point information and 
hit/miss counters for each cores. A 1-bit insert flag is 
also added to each cache line to differentiate 
insertion area occurred by initially allocated cache 
lines and a promotion area where the cache lines are 
reused. As for the insertion point, insert flag is 
checked upon cache hit form LLC access. We check 



whether the block is in the insertion area or the 
promotion area, then check which core the block was 
allocated by to increase the corresponded hit count in 
either the insertion stat or promotion stat. This is in 
order to estimate how many cache hits will occur 
when a new or promoted cache block when placed in 
a certain LRU stack position. For an essentially same 
reason, when an evicted block is selected, we check 
the block’s core ID and estimate how many misses 
will occur when data is stored to the defined 
insertion/promotion point. Based on the above 
scheme, we get a performance indication to each 
insertion and promotion point. 
 

 
Figure 4: Insertion and Promotion point decision 

method 
 

The proposed method configures the insertion 
and promotion point by core, based on the statistics 
from the pointer management unit through the flow 
depicted in Figure 4. There are 2-stages to decide 
insertion and promotion point using overall hit rate 
in cache memory and difference of hit count per core. 

The proposed dynamic insertion and promotion 
policy operates in an interval-based manner and the 
interval is defined by the number of LLC accesses. 
At first stage, when the number of LLC accesses 
exceeds the pre-defined access threshold(AT), total 
hit rate is calculated using the hit/miss count 
monitored per-core. If total hit rate has decreased by 
a certain hit ratio threshold(HT) from the total hit 
rate calculated from the previous interval, hit count 
of each insertion and promotion area is calculated to 
compensate for the performance degradation caused 
by reduced capacity from the point adjustment at 
second stage. Let Min. hit count refer to the largest 
hit count loss from every area. A point which causes 
a hit count loss within a certain portion of Min. hit 
count(MT) will be reduced and moved to MRU 
position in order to increase the alive time of the data.   
On the other hand, if total hit rate has increased by 
certain rate(HT) from the total hit rate calculated in 
the previous interval, cache-friendly and cache-
fitting workload which incurs a large difference in 
hit count is identified from cache-thrashing and 
streaming workload, and point is adjusted 

accordingly. First, hit count difference is calculated 
in each insertion and promotion area and the 
difference between the largest value and the smallest 
value is computed (diff. hit count). This is to give the 
processors running cache-friendly or cache-fitting 
workload priority in obtaining cache capacity. Near 
maximum hit count difference region, or near diff. 
hit count region, we reduce the point to move the 
cache line towards MRU position, and near 
minimum hit count difference region, we increase 
the point to move the cache line towards LRU 
position. The region is defined using a differential 
threshold value (DT). 
 
4. Experiment Evaluation 

To evaluate the proposed replacement policy, we 
use GEM5[7] full system simulator. Our processor 
configuration is 2-core and 4-core both operating at 
2GHz. Each core has 32kB, 8way instruction cache 
and data cache. They also have 1MB, 16-way 
associative L2 cache per core. To simulate multi-
programmed workloads, we use combinations of 
workloads from SPEC CPU2006 benchmark suite, 
which are selected according to their characteristics: 
cache friendly, cache fitting, cache thrashing and 
streaming. To verify the performance of the 
proposed replacement policy with other policies, we 
implement Thread-aware Adaptive Insertion Policy 
(TADIP) [1], Promotion/Insertion Pseudo-
Partitioning (PIPP) [2], and Lifetime-aware LRU 
Promotion Policy [8] and compared the performance, 
along with the baseline LRU policy. The experiment 
is conducted during 200-billion ticks. 

Figure 5 compares the normalized MPKI and IPC 
throughput among the selected replacement policies 
for 2-cores system.  X-axis indicates workload 
characteristics, ‘F-cache friendly’, ‘I-cache fitting’, 
‘T-cache thrashing’, ‘S-streaming’, and combined 
into mixed multi-programs. In case of PIPP, A loss 
of capacity results in degradation of cache utilization 
in all cases. Even satisfying capacity, insertion 
policy biased to LRU or MRU position, i.e. TADIP, 
cannot be optimized performance at workloads 
included cache friendly and fitting workload. While 
lifetime-aware policy only focus on promotion effect 
without consideration of performance loss from 
shorten inserted cache line, proposed replacement 
policy considered not only insertion position but 
promotion position improves cache utilization 
considerably in almost all cases except the 
workloads included cache thrashing which yields 
constant reusability regardless of capacity. Through 
this experiment, we observed that the proposed 
replacement policy yields MPKI improvement of 
about 5.2% and 2.8%, and IPC improvement of 
about 2.2% and 0.4% compared to the baseline LRU 
policy and TADIP, which outperforms PIPP and 
lifetime-aware policy on average, respectively. 



 

 

 
Figure 5: 2-core experiment result. (a) 
normalized MPKI (upper graphs)  (b) normalized 
IPC (lower graphs) 
 

 

 
Figure 6: 4-core experiment result. (a) 
normalized MPKI (upper graphs)  (b) normalized 
IPC (lower graphs) 

 
In Figure 6 which shows the experiment results 

performed in a 4-core system, the workloads are 
randomly composed of a variety of workloads with 
distinct characteristics. We find that the proposed re- 
placement policy outperforms LRU policy by about 
7.1% and 2.5% on average and exhibits a slight 
improvement of 0.8% and 0.2% over TADIP on 
average in MPKI and IPC, respectively. TADIP can 
allocate cache lines which are not expected to be 
reused in near-future, to LRU position immediately, 
whereas our proposed replacement policy will move 
the affected cache lines to LRU position gradually. 

For this reason, experiments performed with cache 
thrashing or streaming workloads severely limit the 
overall performance improvement despite the 
improvement of many others. 
 
5. Conclusion 

In this paper, we proposed a fully dynamic 
insertion and promotion replacement policy targeting 
LLC in CMPs, to improve system performance. We 
demonstrated that adjustment of not only insertion 
point but also promotion point will improve cache 
utilization and provided insights related to it. Our 
experiment is conducted using various combinations 
of workloads through which we were able to explore 
large real-application area. 

However, to prevent cache performance 
degradation, the proposed replacement policy adjusts 
insertion and promotion point step-by-step, gradually. 
We will further improve out replacement policy with 
new techniques including a method of program 
phase change detection and a more flexible 
adjustment of points as future work. 
 
6. Acknowledgement 

This work was supported by the ICT R&D 
program of MSIP/IITP, [2016 (R7177-16-0233), 
Development of Application Program Optimization 
Tools for High Performance Computing Systems] 
and LG Electronics  
 
7. References 
[1] Aamer Jaleel, William Hasenplaugh, Moinuddin 
Qureshi, Julien Sebot, Simon Steely Jr., Joel Emer, 
“Adaptive Insertion Policies for Managing Shared Caches”, 
PACT, October 2008. 
[2] Yuejian Xie and Garbriel H. Loh, “PPIP: 
Promotion/Insertion Pseudo-Partitioning of Multi-Core 
Shared Caches”, ISCA 2009. 
[3] Dimitris Kaseridis and Muhammad Faisal lqbal, 
“Cache Friendliness-Aware Management of Shared Last-
Level Caches for High Performance Multi-Core Systems”, 
TC, Vol. 63, pp. 874-887, April 2014 
[4] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr. 
and Joel Emer, “High Performance Cache Replacment 
Using Re-Reference Interval Prediction (RRIP)”, ISCA, 
June 2010 
[5] Fang Juan and Li Chengyan, “An Improved Multi-core 
Shared Cache Replacement Algorithm”, DCABES, pp. 13-
17, October 2012 
[6] Gangyong jia, Xi Li, Chao Wang, Xuehai Zhou and 
Zongwei Zhu, “Cache Promotion Policy using Re-
Reference Interval Prediction”, CLUSTER, pp. 534-537, 
September 2012 
[7] N. Binkert, el al., “The gem5 Simulator”, ACM 
S’IGARCH computer Architecture News, Vol. 39, No. 2, 
pp. 1-7, May 2011 
[8] Hong-Yi Wu, el al., “Lifetime-aware LRU Promotion 
Policy for Last-level Cache”, VLSI-DAT, pp. 1-4, April 
2015 


